Как автомобили с автопилотом видят мир

Купить зеркало видеорегистратор

Вот как автономные автомобили видят мир.

 
Как вы думаете, мы уже живем в будущем, которое описывали известные фантасты и которое мы не раз видели в фильмах в 20 веке? На самом деле и да, и нет, потому как часть предсказаний фантастов сбылась, а часть все еще находится в разряде фантастики. Что-то, конечно, сбылось, но немного не в том виде, в котором представлялось футурологам, фантастам и киносценаристам. Например, сегодня стремительно набирают популярность автономные, автопилотируемые, робомобильные, драйв-дроидные, автоматические и т. п. автомобили (названий автономных авто действительно очень много, правда, ни одно из названий еще не запатентовано). Уже сегодня автомобили с автопилотом не являются какой-то фантастикой.

Они реально существуют и даже серийно выпускаются. Правда, о полной автономии пока речь не идет. Поколение полностью автоматических автомобилей, которым не нужен водитель, только разрабатывается. Но уже совсем скоро и этот вид транспорта станет массовой реальностью. Естественно, в эпоху суперэлектронных технологий в автопромышленности с каждым днем все больше людей интересуют автономные автомобили.

Поэтому мы должны уже сегодня знать, как они работают и как могут управлять автомобилем без участия водителя. В том числе мы должны иметь представление, как новые автомобили с частичным автопилотом видят вокруг себя, что позволяет им управлять машиной без участия водителя. Также многих интересует вопрос, действительно ли автомобили с автопилотом могут быть лучше нас с вами – обычных водителей? 

Вы задумывались о новомодных технологиях в автопромышленности? Вы понимаете, насколько сложным может быть автомобиль даже с полуавтопилотом, которым сегодня оснащается немало автомобилей? Знаете ли вы, что происходит, когда современный автомобиль берет на себя управление над самим собой? Дайте минутку, и я объясню. 

 
Как вы думаете, мы уже живем в будущем, которое описывали известные фантасты и которое мы не раз видели в фильмах в 20 веке? На самом деле и да, и нет, потому как часть предсказаний фантастов сбылась, а часть все еще находится в разряде фантастики. Что-то, конечно, сбылось, но немного не в том виде, в котором представлялось футурологам, фантастам и киносценаристам. Например, сегодня стремительно набирают популярность автономные, автопилотируемые, робомобильные, драйв-дроидные, автоматические и т. п. автомобили (названий автономных авто действительно очень много, правда, ни одно из названий еще не запатентовано). Уже сегодня автомобили с автопилотом не являются какой-то фантастикой.

Они реально существуют и даже серийно выпускаются. Правда, о полной автономии пока речь не идет. Поколение полностью автоматических автомобилей, которым не нужен водитель, только разрабатывается. Но уже совсем скоро и этот вид транспорта станет массовой реальностью. Естественно, в эпоху суперэлектронных технологий в автопромышленности с каждым днем все больше людей интересуют автономные автомобили.

Поэтому мы должны уже сегодня знать, как они работают и как могут управлять автомобилем без участия водителя. В том числе мы должны иметь представление, как новые автомобили с частичным автопилотом видят вокруг себя, что позволяет им управлять машиной без участия водителя. Также многих интересует вопрос, действительно ли автомобили с автопилотом могут быть лучше нас с вами – обычных водителей? 

Вы задумывались о новомодных технологиях в автопромышленности? Вы понимаете, насколько сложным может быть автомобиль даже с полуавтопилотом, которым сегодня оснащается немало автомобилей? Знаете ли вы, что происходит, когда современный автомобиль берет на себя управление над самим собой? Дайте минутку, и я объясню. 

Управлять движущимся объектом, значительно большим, чем вы, через сложную среду, полную других движущихся объектов, и контролировать скорость движения, включая полное прекращение движения при необходимости, регулировать направление движения и способ изменения скорости, а также контролировать направление движения в зависимости от условий окружающей среды (учитывать сцепление колес с дорогой, погоду и видимость на дороге) очень тяжело. Именно поэтому даже 10-15 лет назад автономные автомобили казались чем-то невероятным, не говоря уже о 20 веке, когда на экраны вышло множество фантастических фильмов, в которых мы не раз видели автомобили с автопилотом. 

Но сегодня электронные технологии позволили автопроизводителям сделать сказку былью. Именно благодаря технологичному прорыву конструкторам и инженерам удалось научить автомобиль выполнять всю работу водителя, контролируя движение на дороге без участия владельца авто. Правда, в серийных автомобилях пока лишь устанавливаются первые поколения автономных систем, позволяющих взять на себя часть обязанностей водителя. Такие автономные технологии называют полуавтопилот. 

На самом деле, если погружаться с головой в современные технологии автономных автомобилей, у вас голова пойдет кругом не только от сложности технологий, но и от невероятных инженерных решений, которые стали возможными благодаря электронному прогрессу во всем мире. 
Но задумывались ли вы, могут ли современные электронные технологии быть лучше нас с вами? Могут ли автономные автомобили заменить обычных водителей? Тем более что, казалось бы, любой компьютер превосходит человека по скорости вычислений и, естественно, имеет шансы быть лучше его. Но не все так просто. 

Для начала подумайте, а как мы водим машину? Как вообще мы с вами научились водить автомобиль? Во-первых, чтобы водить машину, нужно научить наше тело реагировать и действовать гораздо быстрее, чем мы обычно привыкли делать в повседневной жизни. Во-вторых, за умение водить машину мы должны быть благодарны миллионам лет эволюции на планете. Не верите? Тогда попробуйте научить водить машину обезьяну. 

Ведь мы умеем водить машину не только из-за того, что наш мозг более развит. Дело в том, что наши тела предназначены, чтобы водить автомобиль. За миллионы лет эволюции, которая заключалась в борьбе людей против хищников, мы приобрели такие качества, которые позволили нам сесть за руль.
Так, благодаря эволюции мы получили бинокулярное зрение в прямом направлении, способность отслеживать движение объектов, пока мы сами находимся в движении (например, это было необходимо, чтобы кидать копья в бегущих мамонтов и бизонов), и способность предвидеть движение других движущихся объектов. То есть наш мозг научился прогнозировать движение других объектов.
Сами понимаете, если бы наш мозг не мог делать подобное, то об управлении автомобилем можно было бы забыть. 

В итоге мы можем смотреть на пешехода на дороге на углу улицы и предсказывать его дальнейшие действия благодаря врожденному пониманию поведения человека. Также мы можем издалека определять, видит ли нас другой человек, используя эту информацию для того, чтобы решить для себя, как наилучшим образом подъехать к нему или в случае опасности предупредить другого человека, обозначив ваше присутствие если вас не заметили. То есть, сидя за рулем, мы заранее видим, заметил ли нас другой водитель или пешеход на дороге. Благодаря этому у нас есть время предупредить других участников дорожного движения об опасности. 

В том числе мы с вами как водители становимся в буквальном смысле ясновидящими благодаря своему прежнему опыту. Именно поэтому чем больше имеет водитель опыта, тем он лучше и безопаснее управляет автомобилем. В том числе мы можем видеть на дороге то, чего нет в природе. Наш мозг умеет дорисовывать многие зрительные незаконченные образы.

Для начала подумайте, а как мы водим машину? Как вообще мы с вами научились водить автомобиль? Во-первых, чтобы водить машину, нужно научить наше тело реагировать и действовать гораздо быстрее, чем мы обычно привыкли делать в повседневной жизни. Во-вторых, за умение водить машину мы должны быть благодарны миллионам лет эволюции на планете. Не верите? Тогда попробуйте научить водить машину обезьяну. 

Ведь мы умеем водить машину не только из-за того, что наш мозг более развит. Дело в том, что наши тела предназначены, чтобы водить автомобиль. За миллионы лет эволюции, которая заключалась в борьбе людей против хищников, мы приобрели такие качества, которые позволили нам сесть за руль.
Так, благодаря эволюции мы получили бинокулярное зрение в прямом направлении, способность отслеживать движение объектов, пока мы сами находимся в движении (например, это было необходимо, чтобы кидать копья в бегущих мамонтов и бизонов), и способность предвидеть движение других движущихся объектов. То есть наш мозг научился прогнозировать движение других объектов.
Сами понимаете, если бы наш мозг не мог делать подобное, то об управлении автомобилем можно было бы забыть. 

В итоге мы можем смотреть на пешехода на дороге на углу улицы и предсказывать его дальнейшие действия благодаря врожденному пониманию поведения человека. Также мы можем издалека определять, видит ли нас другой человек, используя эту информацию для того, чтобы решить для себя, как наилучшим образом подъехать к нему или в случае опасности предупредить другого человека, обозначив ваше присутствие если вас не заметили. То есть, сидя за рулем, мы заранее видим, заметил ли нас другой водитель или пешеход на дороге. Благодаря этому у нас есть время предупредить других участников дорожного движения об опасности. 

В том числе мы с вами как водители становимся в буквальном смысле ясновидящими благодаря своему прежнему опыту. Именно поэтому чем больше имеет водитель опыта, тем он лучше и безопаснее управляет автомобилем. В том числе мы можем видеть на дороге то, чего нет в природе. Наш мозг умеет дорисовывать многие зрительные незаконченные образы.

 

Например, если мы движемся по дороге за рулем автомобиля и видим четко обозначенные разделительные линии дорожной разметки, но спустя какое-то время доезжаем до участка дороги, где эти линии неожиданно исчезают (стерлась со временем разметка, разметка еще не нанесена после укладки нового асфальта, забыли нарисовать разметку и т. п.), мы легко справимся с этой проблемой, так как наш мозг в этом случае знает примерно, где полосы должны находиться.

В итоге мы можем продолжать движение даже без разделительных полос, не боясь выскочить на встречку. И все это благодаря своему опыту (долгосрочному и кратковременному). В нашем примере работает кратковременный опыт. То есть мы продолжаем свой путь, несмотря на отсутствие разметки на дороге, благодаря последней увиденной разметке на дороге. 

К сожалению, машины не обладают многими врожденными способностями, которые люди используют во время вождения. В итоге конструкторам и инженерам при создании автономных автомобилей, способных управлять собой, в значительной степени пришлось обучать их с нуля.
Правда, стоит отметить, что у машин есть некоторые довольно существенные преимущества по сравнению с человеком. Например, автомобили не способны чувствовать усталость, они не боятся скорости, а также могут непосредственно взаимодействовать с другими автомобилями, получая от них какие-то данные. Также автомобили могут более эффективно взаимодействовать со своей техникой и электроникой. 
 
Большинство современных транспортных средств с автопилотом полагаются на один и тот же базовый набор технологий и общие принципы работы. Чтобы понять, как работают автономные машины, давайте рассмотрим базовый инструментарий, который позволяет дико продвинутому компьютеру вести себя так же, как ведет себя любой человек, управляющий автомобилем.

Оборудование на автономном транспортном средстве, которое может взять управление над автомобилем вместо человека, в первую очередь можно разделить на две категории: сенсорное оборудование и механические приводы. 
Приводы просто передают решение управляющей системы на физическую часть автомобиля. Как правило, эти приводы плотно интегрированы с самим автомобилем.

Для поворота рулевой рейки используются специальные двигатели, которые могут вращать рулевое колесо без участия водителя. В том числе благодаря тому, что большинство современных автомобилей оснащаются системами, не требующими, скажем, физических кабелей или тросов, чтобы передавать действия водителя. Например, сегодня во всех новых автомобилях педаль газа не соединяется физическим тросиком с дроссельной заслонкой в топливной системе. Вместо этого, когда вы нажимаете педаль газа, дроссельная заслонка получает электронный сигнал с педали, который интерпретируется электроникой как увеличение оборотов двигателя. То есть в современных автомобилях педаль газа электронная. 

Естественно, у инженеров не было проблем сделать педаль газа автономной при включенном автопилоте. Как вы уже поняли, все регулируется через компьютер автомобиля.

Намного труднее инженерам было научить автомобиль воспринимать и понимать постоянно меняющийся, постоянно движущийся мир вокруг себя. Вот здесь и пригодилось сенсорное оборудование. 
Вот что это за оборудование:

Ультразвуковые датчики

 
Вы наверняка видели и знаете, как выглядят маленькие круглые «кнопки» на бамперах многих автомобилей. Знаете, что это такое? Естественно, многие автолюбители знают, что речь идет об ультразвуковых датчиках, которые чаще всего используются как датчики парковки (обычные парктроники, установленные в бамперах автомобиля). Парктроники хорошо справляются со своей задачей, предупреждая нас об опасности при парковке, сообщая нам, как близко автомобиль находится от препятствия. Как правило, ультразвуковые датчики работают на низких скоростях. Эти датчики определяют расстояния до других объектов с помощью посылаемого ультразвука, который, отражаясь от объектов, поступает обратно в датчики. Благодаря скорости прохождения сигнала туда и обратно и определяется расстояние до объектов.

На самом деле ультразвуковые датчики не используются массово в автономных автомобилях. Тем не менее во многих автономных транспортных средствах они помогают автомобилю понять окружающую среду. Именно поэтому я о них и решил упомянуть в этой статье. 
Также не стоит забывать и о том, что сегодня во многих автомобилях установлены системы автоматической парковки, которые как раз и используют ультразвуковые парктроники, чтобы правильно парковать машину без участия водителя. В том числе в некоторых полуавтономных автомобилях ультразвуковые датчики помогают контролировать заданные маршруты следования. 

Звук, который выдают парковочные датчики, представляет собой импульсы, которые мы не слышим. Эти импульсы могут быть между 40 кГц и 48 кГц (более новое поколение парктроников использует более высокий звук). Человеческий слух способен воспринимать звук максимум примерно на 20 кГц.
Собаки, кошки и летучие мыши, скорее всего, слышат звук, который исходит от парковочных ультразвуковых датчиков. И этот звук их сильно раздражает. 

Видеокамеры

Видение – это, конечно, самое важное, что мы используем во время вождения. Поэтому большинство самодвижущихся машин оснащены системой, способной видеть окружающий мир с помощью видеокамер. Современные технологии, которые стали доступны в 21 веке, способны создавать очень маленькие высококачественные видеокамеры. Именно поэтому многие современные автомобили имеют современные камеры. Причем даже те, которые не оснащаются полуавтопилотом. Например, сегодня видеокамеры массово используются в автопромышленности в качестве камеры заднего вида, которая передает картинку заднего обзора на экран в салон машины, для того чтобы водитель мог видеть заднюю часть машины, когда паркует ее задним ходом. Это очень удобная система помощи водителю при парковке. 

В автомобилях с системами автопилота камеры обычно устанавливаются над внутренним зеркалом заднего вида в верхнем центре лобового стекла. Эти камеры используются для системы контроля движения в полосе. Данные камеры передают по кадрам обзор дороги с полосами в компьютер, который, анализируя получаемые кадры, идентифицирует каждую линию дорожной разметки на шоссе. Так компьютер определяет, движется ли автомобиль внутри полос. Также эти камеры могут использоваться для систем аварийного торможения и идентификации дорожных знаков.

 

Кстати, все эти камеры в связке с компьютером можно назвать начальным этапом искусственного интеллекта, поскольку эта система на самом деле пытается извлечь из изображений, получаемых с видеокамер, какой-то смысл. То есть для компьютера это не просто набор видеокадров. Естественно, это, конечно, еще никакой не искусственный интеллект. Но тем не менее процесс обработки информации получаемых компьютером данных с камер нельзя уже назвать каким-то однобоким. 

Разумеется, «Смысл» – это немного антропоморфизирующий термин: пока что человечество не создало реальный искусственный разум. На самом деле, если углубляться в технологию автономных автомобилей, то видеокадры, получаемые компьютером с камер, анализируются по специальному алгоритму, который содержит определенный набор критериев. Разумеется, система действует по этим критериям строго определенным образом. В случае же с искусственным разумом компьютер бы сам выстраивал и подстраивал различные критерии, строил бы свои собственные алгоритмы и проводил бы собственные вычисления. 

Большинство автономных систем, устанавливаемых на автомобили с автопилотом, используют две видеокамеры. Это необходимо для того, чтобы получить бинокулярное зрение для реального восприятия глубины (такое же зрение и у нас). 
Правда, камеры, которые устанавливаются под зеркало заднего вида на лобовом стекле, в отличие от камер в смартфонах и фотоаппаратах не так хороши. Большинство автомобильных камер имеют всего от 1 до 2 мегапикселей, что означает, что они видят мир с разрешением около 1600 x 1200 пикселей.
Неплохо. Но это гораздо меньше, чем человеческое зрение. Тем не менее этого достаточно, чтобы решить, что необходимо для управления автомобилем без участия водителя. 
 
Но на самом деле для функционирования автопилота в машине не нужно качество картинки и насыщенных цветов. Кстати, именно по таким критериям мы обычно и делаем оценку камеры смартфонов и фотоаппаратов для использования в повседневной жизни. Для автономных автомобилей важно, чтобы компьютер получал изображение с камер как можно быстрее и за минимальное время обрабатывал полученные кадры.

И чем больше кадров в секунду будет передавать на обработку камера, тем быстрее компьютер может оценить получаемые картинки. Соответственно, от этого будет зависеть время реакции автомобиля в автономном режиме. Сами понимаете, что чем выше разрешение кадров, тем больше она занимает памяти и, соответственно, медленнее передается компьютеру, которому также для обработки видеокадров высокого разрешения необходимо время. Вот почему во всех автономных автомобилях устанавливаются камеры невысокого разрешения. 

При обработке изображений с камеры система искусственного зрения автомобиля должна искать и идентифицировать ряд вещей:

  • Дорожная разметка
  • Границы дороги (встречка/обочина)
  • Другие транспортные средства
  • Велосипедисты, пешеходы, домашние животные, выброшенные матрасы, отлетающие колеса, доски на дороге и все остальное, что может оказаться на дороге и не является транспортным средством
  • Уличные знаки, дорожные знаки, светофоры
  • Сигнальные лампы другого автомобиля

Чтобы идентифицировать эти объекты и людей, система искусственного зрения с помощью камер должна определить, какие пиксели изображения являются фоном, а какие – реальными объектами на дороге, на которые стоит обратить внимание. Мы с вами обычно все это определяем инстинктивно. Но машина не понимает сути. Ведь компьютер получает цветную матрицу цветных пикселей размером 1600×1200. И для него, по идее, припаркованная машина рядом с рестораном на обочине ничем не отличается от неба или зданий, стоящих рядом с дорогой. 

Чтобы заставить компьютер понять, что он видит через свои видеокамеры, необходимо использовать несколько разных методов. Объекты идентифицируются как отдельные от их окружения с помощью алгоритмов и процессов, таких как обнаружение границ всех объектов на картинке (на кадре), что представляет собой сложный и математически важный  для компьютера метод взглянуть на заданное изображение и найти на нем границы между различными областями. Обычно это делается на основе различий в яркости изображений между различными областями пикселей. 
Как вы можете себе представить, этот процесс является нетривиальным, поскольку любая данная сцена, просматриваемая через камеру, полна градиентов цвета, теней, ярких пятен, путаных границ и т. д. Это очень сложная математика, которая выглядит вот так…

… это именно то, на что способны компьютеры (вычислять математические формулы, уравнения и алгоритмы за считанные миллисекунды). Именно поэтому, как правило, этот процесс работает очень хорошо.
Далее, как только отдельные объекты отделены от их фона, они должны быть идентифицированы. Размеры и пропорция – главные факторы в идентификации транспортных средств. Ведь большинство автомобилей очень похожи и имеют большие размеры по сравнению с людьми, велосипедами, мотоциклами и т. п. Также все транспортные средства пропорциональны. 

Вещи, которые воспринимаются автомобильным компьютером как крупные прямоугольники (размером 3,65 м х 1,52 м х 1,83), вероятно, являются автомобилями. Напротив, узкие объекты, которые имеют определенную форму, вероятно, являются велосипедами, мопедами или мотоциклами. Высокие продолговатые объекты, которые движутся, вероятно, являются людьми. 

Вы не поверите, но математикам, компьютерщикам и инженерам довольно-таки быстро получилось научить компьютер идентифицировать автомобили, людей и велосипеды. Но тем не менее подобные автономные системы все равно еще весьма глупы по сравнению с людьми. Именно поэтому многие автомобильные компании создают различные имитации автомобилей, пешеходов и т. п., чтобы научить компьютер без ошибок распознавать все объекты на дороге. Например, компания Ниссан создала точные копии надувных автомобилей с целью обучить систему аварийного торможения распознавать объекты на дороге (в первую очередь людей и транспортные средства), чтобы вовремя остановить автономно автомобиль в случае опасности. Человеку, для того чтобы научиться управлять автомобилем и тормозить, подобных тренажеров не нужно:

Для обучения же автономной системы управления автомобилем подобные тренажеры – отличное решение. Например, чтобы научить автомобиль распознавать (идентифицировать) другие транспортные средства, необходимо провести большое машинное обучение, заложив в память компьютера тысячи примеров, предварительно классифицировав  заранее подготовленные изображения.

Чтобы сделать эти изображения, и нужны различные макеты, имитирующие обычные автомобили. Тем не менее, несмотря на прогресс, любой компьютер сегодня все равно можно одурачить тысячами различных способов. Человека обмануть большинством способов не получится. 
Например, трудно научить компьютер определять разницу между настоящим велосипедом и его изображением, нанесенным на заднюю часть автомобиля. 

Это изображение выше из статьи на сайте MIT Technology Review. В этом материале освещается самая большая проблема в автономных автомобилях, оснащенных камерами, которые легко обмануть при идентификации объектов на изображениях. Это пример, когда нарисованный на автомобиле велосипед компьютер воспринимает как реальный, который движется по дороге. Таким образом, компьютер автомобиля может легко запутаться. 
Для решения этой проблемы ученые, инженеры и компьютерщики решили не полагаться полностью на данные, получаемые с камер. В итоге было принято решение использовать видеокамеры как часть большого набора других датчиков, необходимых для безопасного движения автономных машин на дороге. 

И это логично. Ведь чем больше будет различных вариантов восприятия мира, тем безопаснее будет автономный автомобиль. Сами понимаете, что в условиях ограниченной видимости (ночь, туман, дождь, снег) видеть, что происходит на дороге, с помощью камер недостаточно. 
Вы ведь также плохо видите ночью. Вы же не раз замечали, что управлять автомобилем в ночное время, в дождь, в снег или туман намного сложнее. Так и компьютеру в автомобиле также тяжело видеть окружающий мир при ограниченной видимости с помощью камер. Именно поэтому на помощь камерам пришли другие системы, такие как радар или лидар. 

Что касаемо количества видеокамер, необходимых автономному автомобилю, то достаточно всего пары стереофонических камер, обращенных вперед. Хотя наличие боковых и задних камер также желательно, чтобы помочь автомобилю видеть на 360°. Это идеально для автомобиля с автопилотом, но необязательно. 

Радиолокационные датчики

 
Камеры дают хороший общий обзор окружающей среды вокруг автомобиля, но, чтобы превратить это видение в реальное трехмерное пространство, требуется сложное вычисление компьютера. На помощь приходит высшая математика. Чтобы помочь компьютеру определить, насколько далеко автомобиль находится от других автомобилей и объектов вокруг себя, используются радарные датчики.
 
Радарные системы уже сегодня довольно распространены в автомобилях. Удивлены? Да-да, во многих современных автомобилях стоят радиолокационные датчики (по-простому – радары). Например, с их помощью в новых автомобилях работает адаптивный (динамический) круиз-контроль. 

Адаптивный круиз – это полуавтономная система, которая позволяет автомобилю ездить с заданной скоростью (как при обычном круиз-контроле, когда скорость машины автоматически поддерживает электроника), а также автоматически поддерживать дистанцию до других автомобилей без участия водителя. То есть при необходимости увеличить дистанцию ваш автомобиль автоматически снижает скорость, активируя тормозную систему.
Чтобы эта система исправно работала, автомобили комплектуются радиолокаторами, которые определяют расстояние от вашего автомобиля до автомобиля, идущего впереди вас. В итоге для контроля дистанции электроника автомобиля без участия водителя контролирует педаль газа и педаль тормоза. 
 
Обычно чтобы определить, есть ли у автомобиля радиолокационный излучатель/приемник, вам нужно внимательно посмотреть на переднюю часть машины. Если вы видите странную блестящую плоскую панель, маскирующуюся под часть решетки радиатора или если передняя эмблема-логотип «напечатана» на сплошной блестящей черной панели, то, скорее всего, перед вами автомобиль, на котором установлен радиолокационный приемопередатчик.

Стоит отметить, что радиолокационные данные, поступаемые с радарных датчиков, не пытаются дать компьютеру полный обзор для искусственного зрения. Эти датчики идут в дополнение к камерам. Благодаря радарам информация, поступаемая из внешнего мира, более надежна. Благодаря радиолокационным данным информация о расстоянии, поступаемая в компьютер, более точна. Особенно когда автомобиль движется в темноте и в других неблагоприятных условиях, которые могут запутать систему на базе видеокамер. 

Лидар

Источник: 1gai.ru

Понравилась статья? Поделиться с друзьями: